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Toy example: Causal Bayesian Networks

• Factorized likelihood


• … with local switching after intervention


• Can try and learn graph from data — interventions help!


• … but what if interventions (targets and/or distribution) are 
unknown?

2Background

e.g. hard intervention

x1

x2 x3
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Learning causal mechanisms from experimentation & 
interventions

• Collect datasets from same underlying causal 
system under multiple interventions


• Biology: single-cell expression with interventions 
(drug candidates, gene knockouts)


• Costly interventions & uncertain (off-target 
effects, …)

3Motivation

Image credit: Raamesh Deshpande 

Global genetic landscape of the cell

https://www.eurekalert.org/multimedia/681592
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Causal Discovery from multiple contexts

4

with corresponding unknown interventions

Setup

Observe samples from same underlying causal graph (DAG) across different contexts

Goal: learn               and rigorously account for uncertainty 

x1

x2 x3

x4

I1

I2

Dataset Context x1 x2 x3 x4

-1.45 0.89 1.01 0.40
-1.21 0.68 0.98 0.36
-1.34 0.84 -1.24 -2.22

… … … … …
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• Bayesian Inference of CBNs:


• Known interventions?


• Unknown interventions?


• Intractable! 

Bayesian Causal Discovery from multiple contexts

5Setup

graph prior interv. prior interv. likelihoodposterior

insert

prior terms likelihoodposterior
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BaCaDI: A Differentiable Generative Model over CBNs and 
Interventions

6Method

Without loss of generality, use latent variables

BaCaDI: Bayesian Causal Discovery with Unknown Interventions

5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNs AND
INTERVENTIONS

In the following, we represent G 2 {0, 1}d⇥d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

> 2 {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is in-
tervened upon and I tar

k,l = 0 otherwise. Since multiple nodes
may be intervened upon simultaneously, I tar

k is in general
not one-hot. We write I tar short for the stack [I tar

1 , ..., I tar
M ]

of intervention targets and ⇥I := [⇥I1 , ...,⇥IM ] for the
intervention effect parameters.

Challenges. The Bayesian inference task is intricate when
learning from multiple datasets generated under interven-
tions with unknown targets and effects. Learning the joint
posterior in Eq. 4 requires working with a complex distri-
bution over discrete DAGs G, continuous mechanism pa-
rameters⇥, and interventions {Ik}Mk=1, which in turn affect
the identification of the DAG G itself. Consequently, alter-
nating inference of G and I tar using an EM-like approach
would preclude propagation of epistemic uncertainty across
all latent quantities and thus lead to sub-optimal results.

Moreover, it is essential to infer the parameters of the in-
terventional likelihoods pIki (xi|⇥Ik) in Eq. 11 conditional

upon predicting that an intervention occurred. This is of
particular importance when interventions constitute a strong
shift of distributions. By naively masking the observational
likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of

�k I tar
k

⇥Ik

x

G Z

⇥

M

nk

Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)

·
MY

k=1

p(�k)p(I
tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)

[DiBS, Lorch et al. 2021]
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Joint Variational Inference using SVGD

7

Learn posterior

Method

[Liu and Wang 2016]

Implementation:

Use score and apply 
particle transform SVGD

• Note: joint inference


− Inference of the interventions and causal 

Bayesian network is interdependent


− Estimate epistemic uncertainty jointly
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Experiments: SERGIO

8

SERGIO: a single-cell expression simulator guided by gene regulatory networks  

Results

[Dibaeinia and Sinha 2020]

Interventions: gene knockoutsAlexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause
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Figure 4: Joint posterior over CBNs and interventions for
simulated gene expression data with d = 20 and M = 10
contexts. BaCaDI makes significantly better causal mecha-
nism predictions than the baselines and accurately identifies
the intervention targets. Lower values are better for E-SID/I-
NLL. Higher values are better for AUPRC/INTV-AUPRC.

truth graph most accurately. Moreover, our method is very
accurate in predicting intervention targets as reflected by the
intervention target AUPRC, where it benefits from the prior.
In this context, the accuracy of JCI-PC is close to random
guessing, predicting nearly no interventions and edges.

Since the data generated by SERGIO are samples from
the steady state of a stochastic dynamical system, our
Bayesian model from Sec. 5 is misspecified. The fact that
BaCaDI still performs well demonstrates its robustness
to model mismatch in practice. Overall, BaCaDI is able
to make accurate causal structure predictions with only
200 simulated gene expression measurements from a chal-
lenging multi-experiment setting. This is a promising step
towards joint causal inference in the life sciences. Here, the
predicted intervention targets can further be of independent
interest, e.g., for understanding off-target effects of drugs.

We believe that evaluating causal discovery methods beyond
synthetic toy datasets on more realistic benchmarks, such
as SERGIO, is an important direction for future research.
In particular, there are many open questions about the
practical applicability of current algorithms to real-world
data. We refer to the work of Reisach et al. (2021) who
discuss, in detail, potential issues that arise from synthetic
benchmarking and the scale sensitivity of continuous
optimization for causal structure learning.

8 DISCUSSION
In this work, we introduced BaCaDI, a fully-differentiable
Bayesian causal discovery framework for data generated
under various unknown interventional conditions. BaCaDI
performs approximate inference jointly over the underlying
causal graph, mechanisms, and the unknown interventions
from multiple contexts. A key feature of BaCaDI is its prin-
cipled end-to-end treatment of epistemic uncertainty. In our
experiments, the naive bootstrapping of previous methods
performs worse, potentially because the epistemic uncer-
tainty does not propagate between the unknown interven-
tions and the unknown causal Bayesian network. BaCaDI,
on the other hand, operates reliably even when data is scarce,

and can be instantiated with any parametric model as well
as specific prior knowledge from domain experts.

While the Bayesian approach has shown promise in causal
discovery, there are interesting open problems that remain.
One is that the posterior becomes strongly intractable for
graphs larger than five nodes, making it difficult to accu-
rately characterize or quantify the quality of the posterior
approximation. Additionally, since it is driven by the
likelihood term, the posterior clusters data points based on
their match to the observational likelihood or whether they
require a separate likelihood. As a result, the performance
of identifying interventions is improved when there is a
stronger shift in distribution; interventions that only slightly
alter the distribution cannot be detected with limited data.

Our work is motivated by the challenging problem of
inferring the causal mechanisms of gene regulatory
networks from real single-cell gene expression data. Our
experimental results for the simulated gene expression data
in Sec. 7.3 show that BaCaDI provides an important step
towards achieving this goal. To ultimately reach it, future
work needs to address a range of further challenges, such as
dealing with the experimental measurement noise incurred
by single-cell sequencing techniques.
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Experimental setup

• Sample random graphs (ER-2, SF-2) with 20 nodes and random parameters for local 
conditionals


• Random (hard) interventions on one target, bounded away from 0 with small noise


• 100 observational samples, 10 samples per interventional context


• Baselines — bootstrapped versions of:


	 JCI-PC [Mooij et al. 2016]


	 UT-IGSP [Squires et al. 2020]


	 DCDI-G [Brouillard et al. 2020] 


• Metrics: Expected SID [Peters et al. 2015], held-out interventional NLL,


	  AUPRC for edge prediction, AUPRC for intervention targets 

12Experiments
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Proposition 1
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BaCaDI: Bayesian Causal Discovery with Unknown Interventions

5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNs AND
INTERVENTIONS

In the following, we represent G 2 {0, 1}d⇥d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

> 2 {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is in-
tervened upon and I tar

k,l = 0 otherwise. Since multiple nodes
may be intervened upon simultaneously, I tar

k is in general
not one-hot. We write I tar short for the stack [I tar

1 , ..., I tar
M ]

of intervention targets and ⇥I := [⇥I1 , ...,⇥IM ] for the
intervention effect parameters.

Challenges. The Bayesian inference task is intricate when
learning from multiple datasets generated under interven-
tions with unknown targets and effects. Learning the joint
posterior in Eq. 4 requires working with a complex distri-
bution over discrete DAGs G, continuous mechanism pa-
rameters⇥, and interventions {Ik}Mk=1, which in turn affect
the identification of the DAG G itself. Consequently, alter-
nating inference of G and I tar using an EM-like approach
would preclude propagation of epistemic uncertainty across
all latent quantities and thus lead to sub-optimal results.

Moreover, it is essential to infer the parameters of the in-
terventional likelihoods pIki (xi|⇥Ik) in Eq. 11 conditional

upon predicting that an intervention occurred. This is of
particular importance when interventions constitute a strong
shift of distributions. By naively masking the observational
likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of

�k I tar
k

⇥Ik

x

G Z

⇥

M

nk

Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)

·
MY

k=1

p(�k)p(I
tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)
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Proposition 2
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BaCaDI: Bayesian Causal Discovery with Unknown Interventions
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Figure 2: Instead of just one point estimate, BaCaDI yields particle approximations of the posteriors p(G|D) and p(I tar|D).
We visually compare the posterior particles with the ground truth G and I tar for a SF-2 graph with d = 5 nodes and M = 3
contexts. Blue colors represent edges or targets.

� is given by

r� log p(Z,⇥,�,⇥I |D)

= r� log p(�) +
r�Ep(G|Z)Ep(I tar|�) [ ]

Ep(G|Z)Ep(I tar|�) [ ]

(12)

where the same as in Proposition 1 and contains the priors
and likelihood in Eq. 11. By sampling G and I tar using the
Gumbel-softmax trick, we can pull the gradient r� inside
the expectations and tractably approximate the score using
Monte Carlo sampling. The gradients for Z, ⇥, and ⇥I
are analogous. The derivations are given in Appendix A.3.

Consistent particle variational inference. To infer the
latent posterior p(Z,⇥,�,⇥I |D), we employ the particle
variational inference approach Stein Variational Gradient
Descent (SVGD) (Liu and Wang, 2016). SVGD minimizes
the KL divergence to the intractable distribution of interest
using a finite, optimized set of particles. Specifically, the
algorithm uses the score of the density to transport particles
towards high-probability regions and a kernel k(·, ·) to
introduce a repulsive force between the particles. Since
BaCaDI allows estimating the score, we can apply SVGD
off-the-shelf. We give an overview of SVGD in Appx. F.

Given L initial particles {(Z(l)
0 ,�(l)

0 ,⇥(l)
0 ,⇥(l)

I,0)}Ll=1, we
perform T iterations of particle SVGD updates. We use an-
nealing schedules ↵t ! 1 and �t ! 1 for our continuous
relaxations G↵(Z), I tar

↵ (�) and the graph prior p�(Z). By
annealing the temperature parameters, our posterior over
the continuous latent variables Z and � asymptotically con-
verges into a probability distribution over discrete DAGs
and interventions (proof in Appendix A.2).:

Proposition 2 As ↵ ! 1 and � ! 1 the posterior ex-

pectation in Prop. 1 converges to the simpler expression

Ep(G,⇥,I tar,⇥I |D)[f(G,⇥, I tar,⇥I)]

! Ep(Z,⇥,�,⇥I |D)[f(G1(Z),⇥, I tar
1(�),⇥I)]

(13)

with G1(Z)i,j = 1u>
i vj>0 and I tar

1(�)k,i = 1�i,k>0.

In the limit, the marginal posterior over discrete struc-

tures p(G, I tar|D) is supported on {G|G 2 {0, 1}d⇥d ^

G is acyclic} ⇥ {0, 1}M⇥d
and, thus, a valid probability

mass function over DAGs and intervention targets.

Proposition 2 states that, in the limit, the posterior expec-
tation in (6) simplifies to (13) such that each particle maps
to one DAG G1(Z(l)

T ) and set of discrete targets I tar
1(�(l)

T ).
After completing the SVGD steps, we hence return the
limit particles G1(Z(l)

T ) and I tar
1(�(l)

T ) as the particle ap-
proximation of the posterior p(G,⇥, Itar,⇥I |D). The full
procedure is summarized in Algorithm 1 in Appx. B.

The behavior of SVGD guarantees the minimization of the
KL divergence and asymptotic convergence to the contin-
uous posterior p(Z,⇥,�,⇥I |D) in the large sample limit
of the number of particles (Liu, 2017). By additionally
annealing the continuous relaxations, the posterior that is
approximated by SVGD converges to the semi-continuous
posterior in Eq. 4 we are ultimately interested in. Together,
we thus obtain an asymptotically consistent approximation
of p(G,⇥, I tar,⇥I |D).

Identifiability. Our approach focuses on joint Bayesian
inference over CBNs and interventions and applies to many
instantiations of the generative process in (5). Under ad-
ditional assumptions such as specific functional forms and
noise distributions (Shimizu et al., 2006; Hoyer et al., 2008;
Peters and Bühlmann, 2014), identification results of related,
non-Bayesian methods (e.g., Brouillard et al., 2020) apply
to BaCaDI in the large sample limit where the posterior is
dominated by the likelihood. By proposing an inference
technique rather than a specific parametric model, theoreti-
cal results on identification are not of direct concern to us,
similar to related algorithmic works on structure learning
(Zheng et al., 2018; Yu et al., 2019; Lorch et al., 2021).

Figure 2 illustrates an example of the returned posterior
particles for G and I tar alongside the ground truth for
data generated by a linear-Gaussian, five-node CBN. While
SVGD yields a set of particles of with equal weights, we
weight each particle by its unnormalized posterior prob-
ability p(G,⇥,⇥I , I tar, |D) for performing approximate
Bayesian model averaging, similar to Friedman et al. (1999).
We find that this improves the empirical performance.

BaCaDI: Bayesian Causal Discovery with Unknown Interventions

1 2 3 4 5
Node j

1
2

3
4

5
N

o
d
e

i

G

1 2 3 4 5

Node j

1
2

3C
o
n
te

x
t

k

Itar p(Itar|D)p(G|D)

Figure 2: Instead of just one point estimate, BaCaDI yields particle approximations of the posteriors p(G|D) and p(I tar|D).
We visually compare the posterior particles with the ground truth G and I tar for a SF-2 graph with d = 5 nodes and M = 3
contexts. Blue colors represent edges or targets.

� is given by

r� log p(Z,⇥,�,⇥I |D)

= r� log p(�) +
r�Ep(G|Z)Ep(I tar|�) [ ]

Ep(G|Z)Ep(I tar|�) [ ]

(12)

where the same as in Proposition 1 and contains the priors
and likelihood in Eq. 11. By sampling G and I tar using the
Gumbel-softmax trick, we can pull the gradient r� inside
the expectations and tractably approximate the score using
Monte Carlo sampling. The gradients for Z, ⇥, and ⇥I
are analogous. The derivations are given in Appendix A.3.

Consistent particle variational inference. To infer the
latent posterior p(Z,⇥,�,⇥I |D), we employ the particle
variational inference approach Stein Variational Gradient
Descent (SVGD) (Liu and Wang, 2016). SVGD minimizes
the KL divergence to the intractable distribution of interest
using a finite, optimized set of particles. Specifically, the
algorithm uses the score of the density to transport particles
towards high-probability regions and a kernel k(·, ·) to
introduce a repulsive force between the particles. Since
BaCaDI allows estimating the score, we can apply SVGD
off-the-shelf. We give an overview of SVGD in Appx. F.

Given L initial particles {(Z(l)
0 ,�(l)

0 ,⇥(l)
0 ,⇥(l)

I,0)}Ll=1, we
perform T iterations of particle SVGD updates. We use an-
nealing schedules ↵t ! 1 and �t ! 1 for our continuous
relaxations G↵(Z), I tar

↵ (�) and the graph prior p�(Z). By
annealing the temperature parameters, our posterior over
the continuous latent variables Z and � asymptotically con-
verges into a probability distribution over discrete DAGs
and interventions (proof in Appendix A.2).:

Proposition 2 As ↵ ! 1 and � ! 1 the posterior ex-

pectation in Prop. 1 converges to the simpler expression

Ep(G,⇥,I tar,⇥I |D)[f(G,⇥, I tar,⇥I)]

! Ep(Z,⇥,�,⇥I |D)[f(G1(Z),⇥, I tar
1(�),⇥I)]

(13)

with G1(Z)i,j = 1u>
i vj>0 and I tar

1(�)k,i = 1�i,k>0.

In the limit, the marginal posterior over discrete struc-

tures p(G, I tar|D) is supported on {G|G 2 {0, 1}d⇥d ^

G is acyclic} ⇥ {0, 1}M⇥d
and, thus, a valid probability

mass function over DAGs and intervention targets.

Proposition 2 states that, in the limit, the posterior expec-
tation in (6) simplifies to (13) such that each particle maps
to one DAG G1(Z(l)

T ) and set of discrete targets I tar
1(�(l)

T ).
After completing the SVGD steps, we hence return the
limit particles G1(Z(l)

T ) and I tar
1(�(l)

T ) as the particle ap-
proximation of the posterior p(G,⇥, Itar,⇥I |D). The full
procedure is summarized in Algorithm 1 in Appx. B.

The behavior of SVGD guarantees the minimization of the
KL divergence and asymptotic convergence to the contin-
uous posterior p(Z,⇥,�,⇥I |D) in the large sample limit
of the number of particles (Liu, 2017). By additionally
annealing the continuous relaxations, the posterior that is
approximated by SVGD converges to the semi-continuous
posterior in Eq. 4 we are ultimately interested in. Together,
we thus obtain an asymptotically consistent approximation
of p(G,⇥, I tar,⇥I |D).

Identifiability. Our approach focuses on joint Bayesian
inference over CBNs and interventions and applies to many
instantiations of the generative process in (5). Under ad-
ditional assumptions such as specific functional forms and
noise distributions (Shimizu et al., 2006; Hoyer et al., 2008;
Peters and Bühlmann, 2014), identification results of related,
non-Bayesian methods (e.g., Brouillard et al., 2020) apply
to BaCaDI in the large sample limit where the posterior is
dominated by the likelihood. By proposing an inference
technique rather than a specific parametric model, theoreti-
cal results on identification are not of direct concern to us,
similar to related algorithmic works on structure learning
(Zheng et al., 2018; Yu et al., 2019; Lorch et al., 2021).

Figure 2 illustrates an example of the returned posterior
particles for G and I tar alongside the ground truth for
data generated by a linear-Gaussian, five-node CBN. While
SVGD yields a set of particles of with equal weights, we
weight each particle by its unnormalized posterior prob-
ability p(G,⇥,⇥I , I tar, |D) for performing approximate
Bayesian model averaging, similar to Friedman et al. (1999).
We find that this improves the empirical performance.
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5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNs AND
INTERVENTIONS

In the following, we represent G 2 {0, 1}d⇥d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

> 2 {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is in-
tervened upon and I tar

k,l = 0 otherwise. Since multiple nodes
may be intervened upon simultaneously, I tar

k is in general
not one-hot. We write I tar short for the stack [I tar

1 , ..., I tar
M ]

of intervention targets and ⇥I := [⇥I1 , ...,⇥IM ] for the
intervention effect parameters.

Challenges. The Bayesian inference task is intricate when
learning from multiple datasets generated under interven-
tions with unknown targets and effects. Learning the joint
posterior in Eq. 4 requires working with a complex distri-
bution over discrete DAGs G, continuous mechanism pa-
rameters⇥, and interventions {Ik}Mk=1, which in turn affect
the identification of the DAG G itself. Consequently, alter-
nating inference of G and I tar using an EM-like approach
would preclude propagation of epistemic uncertainty across
all latent quantities and thus lead to sub-optimal results.

Moreover, it is essential to infer the parameters of the in-
terventional likelihoods pIki (xi|⇥Ik) in Eq. 11 conditional

upon predicting that an intervention occurred. This is of
particular importance when interventions constitute a strong
shift of distributions. By naively masking the observational
likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of

�k I tar
k

⇥Ik

x

G Z

⇥

M

nk

Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)

·
MY

k=1

p(�k)p(I
tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)
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where � := [�1, ...,�M ] for brevity. As shown in the fol-
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This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:
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�
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Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)

Alexander Hägele, Jonas Rothfuss, Lars Lorch, Vignesh Ram Somnath, Bernhard Schölkopf, Andreas Krause

where �↵(x) = 1/(1 + exp(�↵x)) is the sigmoid func-
tion with inverse temperature ↵ and ui, vj the i-th and
j-th column vectors of U and V, respectively. The authors
show that this formulation outperforms a scalar parametriza-
tion based on a d ⇥ d matrix. We denote the matrix of
edge probabilities in G given Z by G↵(Z) 2 [0, 1]d⇥d

with G↵(Z)ij := �↵(u>
i vj). We model the prior over Z

as (i.) i.i.d. Gaussian with a variance of ⌘2
Z = 1/d to en-

sure well-behaved gradients and (ii.) an acyclicity term that
penalizes the expected cyclicity of G given Z:

p�(Z) = p(U,V) / exp
�
��Ep(G|Z)[h(G)]

�
| {z }

acyclicity prior

·
dY

i=1

N (ui|0, ⌘2
ZI)N (vi|0, ⌘2

ZI)| {z }
inference stability

(8)

Here, � is an inverse temperature parameter controlling
how strongly the acyclicity is enforced, and h(G) =
tr
⇥
(I + 1

dG)d
⇤
� d � 0. By Theorem 1 of Yu et al. (2019),

G is acyclic iff h(G) = 0. As � ! 1, the support of p(Z)
reduces to all Z that model DAGs.

Generative model of intervention targets I tar. To model
the intervention targets in continuous space, we introduce
the latent variable � 2 RM⇥d. Each �k,i is the logit of an
independent Bernoulli distribution and models one entry
(k, i) of the intervention target mask I tar = [I tar

1 , ..., I tar
M ] 2

{0, 1}M⇥d:

p(I tar|�) =
MY

k=1

dY

i=1

p↵(I
tar
k,i|�k,i)

with I tar
k,i|�k,i ⇠ Bern(�↵(�k,i))

(9)

We denote the matrix of intervention target probabilities
as I tar

↵ (�) 2 [0, 1]M⇥d with I tar
↵ (�)k,i = �↵(�k,i). The

prior over � has three components: (i.) A Gaussian term for
inference stability , (ii.) a Beta-distribution sharpness prior
that encourages �↵(�k,i) to be close to 0 or 1, and (iii.) a
sparsity prior with the l1-norm of �↵(�k) and the inverse
temperature parameter �.

p(�) /
MY

k=1

exp (��k�↵(�k)k1)| {z }
sparse masks

·
dY

i=1

Beta(�↵(�k,i); ⇣1, ⇣2)| {z }
sharp masks

N (�k|0, ⌘2
�I)| {z }

inference stability

(10)

We assume that interventions occur infrequently, i.e., in
expectation only on one variable. Hence, we choose
⇣1 = 1/d and ⇣2 = (d � 1)/d. The sparsity prior implies
that, given an active intervention target i, it is a-priori less
likely that a variable j 6= i is intervened upon in the same
context k. The sparsity of interventions can additionally
be regulated with the parameter �.

Interventional likelihood. Combining the generative DAG
and intervention models in Eqs. 8 and 9, we obtain a dif-
ferentiable interventional likelihood by sampling the graph
G ⇠ Bern (�↵(UV>)) and masks I tar ⇠ Bern (�↵(�))
with the Gumbel-Softmax trick (Jang et al., 2016; Maddison
et al., 2017) and using them to select between the observa-
tional and interventional likelihoods for each variable:

p(Dk|G,⇥, I tar
k ,⇥Ik) = (11)

nkY

j=1

dY

i=1

⇣
p(x(k,j)

i |xpaG(i),⇥)(1�I tar
k,i) · p(x(k,j)

i |⇥Ik)
I tar
k,i

⌘

Importantly, this formulation does not assume a specific like-
lihood or intervention model. This means that any restricted
model (e.g. linear mechanisms, non-Gaussian noise) can be
used to describe the causal relations between variables. This
also extends to the interventions, where both hard and soft
interventions can be plugged into the interventional likeli-
hood in Eq. 11 to model local changes in the distribution.
For both parts, the only required property is differentiabil-
ity with respect to the latent parameters. The likelihood
model should be informed by the application, experts, or the
type of data that is assumed; additionally, restricted mod-
els are necessary in order to guarantee identifiability of the
ground-truth structure. We will come back to the question
of identifiability at the end of Sec. 6.

6 VARIATIONAL INFERENCE OVER
CBNs AND INTERVENTIONS

In Section 5, we have presented an extended graphical model
of the multi-context, unknown-intervention causal discovery
problem. Our extended model introduces additional con-
tinuous variables Z and � that characterize the generative
process of G and the intervention targets I tar. Proposition 1
shows that we can perform Bayesian inference of the graph
G and intervention targets I tar by inferring the posterior
over the continuous latent variables Z and �.

In this section, we discuss how to approach the final chal-
lenge of inferring this equally intractable, yet continuous
posterior and finally convert the result back into an approxi-
mation of the joint posterior p(G,⇥, I tar,⇥I |D) over dis-
crete structures G, I tar and continuous parameters ⇥,⇥I .

Posterior scores. While Proposition 1 links the semi-
continuous posterior p(G,⇥, I tar,⇥I |D) to its continuous
counterpart, the inference problem appears just to shift.
However, the transformation we introduce enables using
inference methods based on continuous optimization,
and more importantly, allows estimating the gradients of
log p(Z,⇥,�,⇥I |D), which many approximate inference
techniques rely on (e.g. Welling and Teh, 2011; Chen et al.,
2014; Liu and Wang, 2016). The gradient with respect to
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likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of

�k I tar
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Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)

·
MY

k=1

p(�k)p(I
tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)
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5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNs AND
INTERVENTIONS

In the following, we represent G 2 {0, 1}d⇥d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

> 2 {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is in-
tervened upon and I tar

k,l = 0 otherwise. Since multiple nodes
may be intervened upon simultaneously, I tar

k is in general
not one-hot. We write I tar short for the stack [I tar

1 , ..., I tar
M ]

of intervention targets and ⇥I := [⇥I1 , ...,⇥IM ] for the
intervention effect parameters.

Challenges. The Bayesian inference task is intricate when
learning from multiple datasets generated under interven-
tions with unknown targets and effects. Learning the joint
posterior in Eq. 4 requires working with a complex distri-
bution over discrete DAGs G, continuous mechanism pa-
rameters⇥, and interventions {Ik}Mk=1, which in turn affect
the identification of the DAG G itself. Consequently, alter-
nating inference of G and I tar using an EM-like approach
would preclude propagation of epistemic uncertainty across
all latent quantities and thus lead to sub-optimal results.

Moreover, it is essential to infer the parameters of the in-
terventional likelihoods pIki (xi|⇥Ik) in Eq. 11 conditional

upon predicting that an intervention occurred. This is of
particular importance when interventions constitute a strong
shift of distributions. By naively masking the observational
likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of
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Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)

·
MY
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tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)
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where �↵(x) = 1/(1 + exp(�↵x)) is the sigmoid func-
tion with inverse temperature ↵ and ui, vj the i-th and
j-th column vectors of U and V, respectively. The authors
show that this formulation outperforms a scalar parametriza-
tion based on a d ⇥ d matrix. We denote the matrix of
edge probabilities in G given Z by G↵(Z) 2 [0, 1]d⇥d

with G↵(Z)ij := �↵(u>
i vj). We model the prior over Z

as (i.) i.i.d. Gaussian with a variance of ⌘2
Z = 1/d to en-

sure well-behaved gradients and (ii.) an acyclicity term that
penalizes the expected cyclicity of G given Z:

p�(Z) = p(U,V) / exp
�
��Ep(G|Z)[h(G)]

�
| {z }

acyclicity prior

·
dY

i=1

N (ui|0, ⌘2
ZI)N (vi|0, ⌘2

ZI)| {z }
inference stability

(8)

Here, � is an inverse temperature parameter controlling
how strongly the acyclicity is enforced, and h(G) =
tr
⇥
(I + 1

dG)d
⇤
� d � 0. By Theorem 1 of Yu et al. (2019),

G is acyclic iff h(G) = 0. As � ! 1, the support of p(Z)
reduces to all Z that model DAGs.

Generative model of intervention targets I tar. To model
the intervention targets in continuous space, we introduce
the latent variable � 2 RM⇥d. Each �k,i is the logit of an
independent Bernoulli distribution and models one entry
(k, i) of the intervention target mask I tar = [I tar

1 , ..., I tar
M ] 2

{0, 1}M⇥d:

p(I tar|�) =
MY

k=1

dY

i=1

p↵(I
tar
k,i|�k,i)

with I tar
k,i|�k,i ⇠ Bern(�↵(�k,i))

(9)

We denote the matrix of intervention target probabilities
as I tar

↵ (�) 2 [0, 1]M⇥d with I tar
↵ (�)k,i = �↵(�k,i). The

prior over � has three components: (i.) A Gaussian term for
inference stability , (ii.) a Beta-distribution sharpness prior
that encourages �↵(�k,i) to be close to 0 or 1, and (iii.) a
sparsity prior with the l1-norm of �↵(�k) and the inverse
temperature parameter �.

p(�) /
MY

k=1

exp (��k�↵(�k)k1)| {z }
sparse masks

·
dY

i=1

Beta(�↵(�k,i); ⇣1, ⇣2)| {z }
sharp masks

N (�k|0, ⌘2
�I)| {z }

inference stability

(10)

We assume that interventions occur infrequently, i.e., in
expectation only on one variable. Hence, we choose
⇣1 = 1/d and ⇣2 = (d � 1)/d. The sparsity prior implies
that, given an active intervention target i, it is a-priori less
likely that a variable j 6= i is intervened upon in the same
context k. The sparsity of interventions can additionally
be regulated with the parameter �.

Interventional likelihood. Combining the generative DAG
and intervention models in Eqs. 8 and 9, we obtain a dif-
ferentiable interventional likelihood by sampling the graph
G ⇠ Bern (�↵(UV>)) and masks I tar ⇠ Bern (�↵(�))
with the Gumbel-Softmax trick (Jang et al., 2016; Maddison
et al., 2017) and using them to select between the observa-
tional and interventional likelihoods for each variable:

p(Dk|G,⇥, I tar
k ,⇥Ik) = (11)

nkY

j=1

dY

i=1

⇣
p(x(k,j)

i |xpaG(i),⇥)(1�I tar
k,i) · p(x(k,j)

i |⇥Ik)
I tar
k,i

⌘

Importantly, this formulation does not assume a specific like-
lihood or intervention model. This means that any restricted
model (e.g. linear mechanisms, non-Gaussian noise) can be
used to describe the causal relations between variables. This
also extends to the interventions, where both hard and soft
interventions can be plugged into the interventional likeli-
hood in Eq. 11 to model local changes in the distribution.
For both parts, the only required property is differentiabil-
ity with respect to the latent parameters. The likelihood
model should be informed by the application, experts, or the
type of data that is assumed; additionally, restricted mod-
els are necessary in order to guarantee identifiability of the
ground-truth structure. We will come back to the question
of identifiability at the end of Sec. 6.

6 VARIATIONAL INFERENCE OVER
CBNs AND INTERVENTIONS

In Section 5, we have presented an extended graphical model
of the multi-context, unknown-intervention causal discovery
problem. Our extended model introduces additional con-
tinuous variables Z and � that characterize the generative
process of G and the intervention targets I tar. Proposition 1
shows that we can perform Bayesian inference of the graph
G and intervention targets I tar by inferring the posterior
over the continuous latent variables Z and �.

In this section, we discuss how to approach the final chal-
lenge of inferring this equally intractable, yet continuous
posterior and finally convert the result back into an approxi-
mation of the joint posterior p(G,⇥, I tar,⇥I |D) over dis-
crete structures G, I tar and continuous parameters ⇥,⇥I .

Posterior scores. While Proposition 1 links the semi-
continuous posterior p(G,⇥, I tar,⇥I |D) to its continuous
counterpart, the inference problem appears just to shift.
However, the transformation we introduce enables using
inference methods based on continuous optimization,
and more importantly, allows estimating the gradients of
log p(Z,⇥,�,⇥I |D), which many approximate inference
techniques rely on (e.g. Welling and Teh, 2011; Chen et al.,
2014; Liu and Wang, 2016). The gradient with respect to
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where �↵(x) = 1/(1 + exp(�↵x)) is the sigmoid func-
tion with inverse temperature ↵ and ui, vj the i-th and
j-th column vectors of U and V, respectively. The authors
show that this formulation outperforms a scalar parametriza-
tion based on a d ⇥ d matrix. We denote the matrix of
edge probabilities in G given Z by G↵(Z) 2 [0, 1]d⇥d

with G↵(Z)ij := �↵(u>
i vj). We model the prior over Z

as (i.) i.i.d. Gaussian with a variance of ⌘2
Z = 1/d to en-

sure well-behaved gradients and (ii.) an acyclicity term that
penalizes the expected cyclicity of G given Z:

p�(Z) = p(U,V) / exp
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��Ep(G|Z)[h(G)]
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Here, � is an inverse temperature parameter controlling
how strongly the acyclicity is enforced, and h(G) =
tr
⇥
(I + 1

dG)d
⇤
� d � 0. By Theorem 1 of Yu et al. (2019),

G is acyclic iff h(G) = 0. As � ! 1, the support of p(Z)
reduces to all Z that model DAGs.

Generative model of intervention targets I tar. To model
the intervention targets in continuous space, we introduce
the latent variable � 2 RM⇥d. Each �k,i is the logit of an
independent Bernoulli distribution and models one entry
(k, i) of the intervention target mask I tar = [I tar

1 , ..., I tar
M ] 2

{0, 1}M⇥d:

p(I tar|�) =
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k,i|�k,i)

with I tar
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We denote the matrix of intervention target probabilities
as I tar

↵ (�) 2 [0, 1]M⇥d with I tar
↵ (�)k,i = �↵(�k,i). The

prior over � has three components: (i.) A Gaussian term for
inference stability , (ii.) a Beta-distribution sharpness prior
that encourages �↵(�k,i) to be close to 0 or 1, and (iii.) a
sparsity prior with the l1-norm of �↵(�k) and the inverse
temperature parameter �.
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We assume that interventions occur infrequently, i.e., in
expectation only on one variable. Hence, we choose
⇣1 = 1/d and ⇣2 = (d � 1)/d. The sparsity prior implies
that, given an active intervention target i, it is a-priori less
likely that a variable j 6= i is intervened upon in the same
context k. The sparsity of interventions can additionally
be regulated with the parameter �.

Interventional likelihood. Combining the generative DAG
and intervention models in Eqs. 8 and 9, we obtain a dif-
ferentiable interventional likelihood by sampling the graph
G ⇠ Bern (�↵(UV>)) and masks I tar ⇠ Bern (�↵(�))
with the Gumbel-Softmax trick (Jang et al., 2016; Maddison
et al., 2017) and using them to select between the observa-
tional and interventional likelihoods for each variable:
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Importantly, this formulation does not assume a specific like-
lihood or intervention model. This means that any restricted
model (e.g. linear mechanisms, non-Gaussian noise) can be
used to describe the causal relations between variables. This
also extends to the interventions, where both hard and soft
interventions can be plugged into the interventional likeli-
hood in Eq. 11 to model local changes in the distribution.
For both parts, the only required property is differentiabil-
ity with respect to the latent parameters. The likelihood
model should be informed by the application, experts, or the
type of data that is assumed; additionally, restricted mod-
els are necessary in order to guarantee identifiability of the
ground-truth structure. We will come back to the question
of identifiability at the end of Sec. 6.

6 VARIATIONAL INFERENCE OVER
CBNs AND INTERVENTIONS

In Section 5, we have presented an extended graphical model
of the multi-context, unknown-intervention causal discovery
problem. Our extended model introduces additional con-
tinuous variables Z and � that characterize the generative
process of G and the intervention targets I tar. Proposition 1
shows that we can perform Bayesian inference of the graph
G and intervention targets I tar by inferring the posterior
over the continuous latent variables Z and �.

In this section, we discuss how to approach the final chal-
lenge of inferring this equally intractable, yet continuous
posterior and finally convert the result back into an approxi-
mation of the joint posterior p(G,⇥, I tar,⇥I |D) over dis-
crete structures G, I tar and continuous parameters ⇥,⇥I .

Posterior scores. While Proposition 1 links the semi-
continuous posterior p(G,⇥, I tar,⇥I |D) to its continuous
counterpart, the inference problem appears just to shift.
However, the transformation we introduce enables using
inference methods based on continuous optimization,
and more importantly, allows estimating the gradients of
log p(Z,⇥,�,⇥I |D), which many approximate inference
techniques rely on (e.g. Welling and Teh, 2011; Chen et al.,
2014; Liu and Wang, 2016). The gradient with respect to
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Figure 2: Instead of just one point estimate, BaCaDI yields particle approximations of the posteriors p(G|D) and p(I tar|D).
We visually compare the posterior particles with the ground truth G and I tar for a SF-2 graph with d = 5 nodes and M = 3
contexts. Blue colors represent edges or targets.

� is given by

r� log p(Z,⇥,�,⇥I |D)

= r� log p(�) +
r�Ep(G|Z)Ep(I tar|�) [ ]

Ep(G|Z)Ep(I tar|�) [ ]

(12)

where the same as in Proposition 1 and contains the priors
and likelihood in Eq. 11. By sampling G and I tar using the
Gumbel-softmax trick, we can pull the gradient r� inside
the expectations and tractably approximate the score using
Monte Carlo sampling. The gradients for Z, ⇥, and ⇥I
are analogous. The derivations are given in Appendix A.3.

Consistent particle variational inference. To infer the
latent posterior p(Z,⇥,�,⇥I |D), we employ the particle
variational inference approach Stein Variational Gradient
Descent (SVGD) (Liu and Wang, 2016). SVGD minimizes
the KL divergence to the intractable distribution of interest
using a finite, optimized set of particles. Specifically, the
algorithm uses the score of the density to transport particles
towards high-probability regions and a kernel k(·, ·) to
introduce a repulsive force between the particles. Since
BaCaDI allows estimating the score, we can apply SVGD
off-the-shelf. We give an overview of SVGD in Appx. F.

Given L initial particles {(Z(l)
0 ,�(l)

0 ,⇥(l)
0 ,⇥(l)

I,0)}Ll=1, we
perform T iterations of particle SVGD updates. We use an-
nealing schedules ↵t ! 1 and �t ! 1 for our continuous
relaxations G↵(Z), I tar

↵ (�) and the graph prior p�(Z). By
annealing the temperature parameters, our posterior over
the continuous latent variables Z and � asymptotically con-
verges into a probability distribution over discrete DAGs
and interventions (proof in Appendix A.2).:

Proposition 2 As ↵ ! 1 and � ! 1 the posterior ex-

pectation in Prop. 1 converges to the simpler expression

Ep(G,⇥,I tar,⇥I |D)[f(G,⇥, I tar,⇥I)]

! Ep(Z,⇥,�,⇥I |D)[f(G1(Z),⇥, I tar
1(�),⇥I)]

(13)

with G1(Z)i,j = 1u>
i vj>0 and I tar

1(�)k,i = 1�i,k>0.

In the limit, the marginal posterior over discrete struc-

tures p(G, I tar|D) is supported on {G|G 2 {0, 1}d⇥d ^

G is acyclic} ⇥ {0, 1}M⇥d
and, thus, a valid probability

mass function over DAGs and intervention targets.

Proposition 2 states that, in the limit, the posterior expec-
tation in (6) simplifies to (13) such that each particle maps
to one DAG G1(Z(l)

T ) and set of discrete targets I tar
1(�(l)

T ).
After completing the SVGD steps, we hence return the
limit particles G1(Z(l)

T ) and I tar
1(�(l)

T ) as the particle ap-
proximation of the posterior p(G,⇥, Itar,⇥I |D). The full
procedure is summarized in Algorithm 1 in Appx. B.

The behavior of SVGD guarantees the minimization of the
KL divergence and asymptotic convergence to the contin-
uous posterior p(Z,⇥,�,⇥I |D) in the large sample limit
of the number of particles (Liu, 2017). By additionally
annealing the continuous relaxations, the posterior that is
approximated by SVGD converges to the semi-continuous
posterior in Eq. 4 we are ultimately interested in. Together,
we thus obtain an asymptotically consistent approximation
of p(G,⇥, I tar,⇥I |D).

Identifiability. Our approach focuses on joint Bayesian
inference over CBNs and interventions and applies to many
instantiations of the generative process in (5). Under ad-
ditional assumptions such as specific functional forms and
noise distributions (Shimizu et al., 2006; Hoyer et al., 2008;
Peters and Bühlmann, 2014), identification results of related,
non-Bayesian methods (e.g., Brouillard et al., 2020) apply
to BaCaDI in the large sample limit where the posterior is
dominated by the likelihood. By proposing an inference
technique rather than a specific parametric model, theoreti-
cal results on identification are not of direct concern to us,
similar to related algorithmic works on structure learning
(Zheng et al., 2018; Yu et al., 2019; Lorch et al., 2021).

Figure 2 illustrates an example of the returned posterior
particles for G and I tar alongside the ground truth for
data generated by a linear-Gaussian, five-node CBN. While
SVGD yields a set of particles of with equal weights, we
weight each particle by its unnormalized posterior prob-
ability p(G,⇥,⇥I , I tar, |D) for performing approximate
Bayesian model averaging, similar to Friedman et al. (1999).
We find that this improves the empirical performance.
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5 A DIFFERENTIABLE GENERATIVE
MODEL OVER CBNs AND
INTERVENTIONS

In the following, we represent G 2 {0, 1}d⇥d as the
adjacency matrix and I tar

k = [I tar
k,1, ..., I

tar
k,d]

> 2 {0, 1}d as
the indicator vector where I tar

k,l = 1 if the l-th variable is in-
tervened upon and I tar

k,l = 0 otherwise. Since multiple nodes
may be intervened upon simultaneously, I tar

k is in general
not one-hot. We write I tar short for the stack [I tar

1 , ..., I tar
M ]

of intervention targets and ⇥I := [⇥I1 , ...,⇥IM ] for the
intervention effect parameters.

Challenges. The Bayesian inference task is intricate when
learning from multiple datasets generated under interven-
tions with unknown targets and effects. Learning the joint
posterior in Eq. 4 requires working with a complex distri-
bution over discrete DAGs G, continuous mechanism pa-
rameters⇥, and interventions {Ik}Mk=1, which in turn affect
the identification of the DAG G itself. Consequently, alter-
nating inference of G and I tar using an EM-like approach
would preclude propagation of epistemic uncertainty across
all latent quantities and thus lead to sub-optimal results.

Moreover, it is essential to infer the parameters of the in-
terventional likelihoods pIki (xi|⇥Ik) in Eq. 11 conditional

upon predicting that an intervention occurred. This is of
particular importance when interventions constitute a strong
shift of distributions. By naively masking the observational
likelihood when a variable is believed to be targeted, we
would not evaluate the likelihood of the intervention itself
and effectively operate outside the Bayesian framework.
This would encourage the prediction of interventions when-
ever our learned model is suboptimal in explaining the data.

To tackle these joint inference challenges, we utilize ideas
of Lorch et al. (2021), who introduce a method for efficient
inference of the posterior of the CBN (G,⇥) given a single
observational dataset D by translating the distribution into
a continuous latent space. Generalizing their approach,
we transform our multi-context inference problem over
the DAG G and the set of interventions targets {I tar

k } into
one over only continuous latent variables that is consistent

with the original task in Eq. 4 and that allows for the direct
estimation of the score of the joint posterior over G and I tar

k
in each context k = 1, . . . ,M . Devising such an inference
scheme for the multi-context, unknown intervention setting
requires careful modeling of the intervention target prior
that accurately captures our assumptions of the data
generating process, such as sparsity and sharpness of the
interventions. At the same time, it must enable accurate and
tractable inference via methods like variational inference
(Blei et al., 2017) and perform well in practice.

To enable joint inference of all latent quantities, we intro-
duce continuous latent variables Z and �k and their corre-
sponding priors, which model the generative processes of
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Figure 1: Generative model of causal Bayesian networks
with observations sampled in M intervention contexts. The
continuous variables {�k} and Z extend the default data-
generating process and allow reformulating the Bayesian
inference task for gradient-based inference techniques.

G and I tar
k through p(G|Z) and p(I tar

k |�k). This implies the
following extended factorization of the generative model,
which is also given in Figure 1:

p(Z,G,⇥,�, I,D) = p(Z)p(G|Z)p(⇥|G)| {z }
generative process CBN

(5)
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MY
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tar
k |�k)p(⇥Ik |I tar

k )| {z }
generative process intervention

p(Dk|G,⇥, I tar
k ,⇥Ik)| {z }

interventional likelihood

where � := [�1, ...,�M ] for brevity. As shown in the fol-
lowing, the extended generative model we introduce allows
expressing the posterior in Eq. 4 in terms of the posterior
over the continuous latent variables Z,⇥, �, and⇥I :

Proposition 1 Under the extended generative model in

Eq. 5 and Figure 1, it holds that

Ep(G,⇥,I|D)[f(G,⇥, I)] = (6)

Ep(Z,⇥,�,⇥I |D)

Ep(G|Z)Ep(I tar|�)[f(G,⇥, I) · ]

Ep(G|Z)Ep(I tar|�)[ ]

�

with weighting = p(⇥|G)p(⇥I |I tar)p(D|G, I,⇥) and

p(D|G, I,⇥) =
QM

k=1 p(Dk|G,⇥, I tar
k ,⇥Ik).

This insight shows that the posterior expectation over graphs
and interventions can be computed via an expectation over
the latent posterior p(Z,⇥,�,⇥I |D). We provide a proof
in Appx. A.1. The inner term is akin to a likelihood ratio
of the considered (G,⇥, I) under the posterior expectation
over Z and �. All factors besides the latent posterior are
tractable to compute or approximate. Before we discuss how
to perform approximate inference of p(Z,⇥,�,⇥I |D), we
further specify the conditional probabilities of our genera-
tive model and how to make them differentiable.

Generative model of DAGs G. Following Lorch et al.
(2021), we define the latent variable Z as the stack of em-
bedding matrices U,V 2 Rd⇥d and the generative model
for the adjacency matrix G by using the inner product:

p↵(G|Z) =
dY

i=1

dY

j 6=i

p↵(gij |ui,vj)

with gij |ui,vj ⇠ Bern(�↵(u
>
i vj))

(7)


